Completeness, Ricci Blowup, the Osserman and the Conformal Osserman Condition for Walker Signature (2, 2) Manifolds
نویسنده
چکیده
Walker manifolds of signature (2, 2) have been used by many authors to provide examples of Osserman and of conformal Osserman manifolds of signature (2, 2). We study questions of geodesic completeness and Ricci blowup in this context.
منابع مشابه
Curvature Homogeneous Spacelike Jordan Osserman Pseudo-riemannian Manifolds
Let s ≥ 2. We construct Ricci flat pseudo-Riemannian manifolds of signature (2s, s) which are not locally homogeneous but whose curvature tensors never the less exhibit a number of important symmetry properties. They are curvature homogeneous; their curvature tensor is modeled on that of a local symmetric space. They are spacelike Jordan Osserman with a Jacobi operator which is nilpotent of ord...
متن کاملNilpotent Spacelike Jorden Osserman Pseudo-riemannian Manifolds
Pseudo-Riemannian manifolds of balanced signature which are both spacelike and timelike Jordan Osserman nilpotent of order 2 and of order 3 have been constructed previously. In this short note, we shall construct pseudo-Riemannian manifolds of signature (2s, s) for any s ≥ 2 which are spacelike Jordan Osserman nilpotent of order 3 but which are not timelike Jordan Osserman. Our example and tech...
متن کاملComplete k-Curvature Homogeneous Pseudo-Riemannian Manifolds
For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.
متن کاملConformally Osserman Manifolds
An algebraic curvature tensor is called Osserman if the eigenvalues of the associated Jacobi operator are constant on the unit sphere. A Riemannian manifold is called conformally Osserman if its Weyl conformal curvature tensor at every point is Osserman. We prove that a conformally Osserman manifold of dimension n 6= 3, 4, 16 is locally conformally equivalent either to a Euclidean space or to a...
متن کاملct 2 00 2 Osserman Conjecture in dimension n 6 = 8 , 16
Let M n be a Riemannian manifold and R its curvature tensor. For a point p ∈ M n and a unit vector X ∈ TpM n , the Jacobi operator is defined by RX = R(X, ·)X. The manifold M n is called pointwise Osserman if, for every p ∈ M n , the spectrum of the Jacobi operator does not depend of the choice of X, and is called globally Osserman if it depends neither of X, nor of p. Osserman conjectured that...
متن کامل